
LARAVEL
BEYOND CRUD
Building larger-than-average web applications
Brent Roose

PRESENTS LARAVEL-BEYOND-CRUD.COMPRESENTS LARAVEL-BEYOND-CRUD.COM

EXAMPLE CHAPTER

Working with data

I like to think of that simple idea of grouping code in domains—which I
explained in the previous chapter—as a conceptual foundation we can use to
build upon. You'll notice that throughout the first part of this book, this core
idea will return again and again.

The very first building block we'll be laying upon this foundation, is once again
so simple in its core, yet so powerful: we're going to model data in a
structured way; we're going to make data a first-class citizen of our
codebase.

You probably noticed the importance of data modelling at the start of almost
every project you do: you don't start building controllers and jobs, you start
by building, what Laravel calls, models. Large projects benefit from making
ERDs and other kinds of diagrams to conceptualise what data will be handled
by the application. Only when that's clear, you can start building the entry
points and hooks that work with your data.

The goal of this chapter is to teach you the importance of that data flow.
We're not even going to talk about models. Instead, we're going to look at
simple plain data to start with, and the goal is that all developers in your team
can write code that interacts with this data in a predictable and safe way.

23Working with data 23

To really appreciate all the benefits we'll get from applying a simple data-
oriented pattern, we'll need to dive into PHP's type system first.

Type theory

Not everyone agrees on the vocabulary used when talking about type
systems. So let's clarify a few terms in the way that I will use them here.

The strength of a type system—strong or weak types—defines whether a
variable can change its type after it was defined. A simple example: given a
string variable $a = 'test'; a weak type system allows you to re-assign that
variable to another type, for example $a = 1, an integer.

PHP is a weakly typed language. Let's look at what that means in practice.

$id = '1'; // E.g. an id retrieved from the URL

function find(int $id): Model
{

// The input '1' will automatically be cast to an int
}

find($id);

To be clear: it makes sense for PHP to have a weak type system. Being a
language that mainly works with a HTTP request, everything is basically a
string.

You might think that in modern PHP, you can avoid this behind-the-scenes
type switching— type juggling—by using the strict types feature, but that's
not completely true. Declaring strict types prevents other types being passed

24 Laravel beyond CRUD

into a function, but you can still change the value of the variable in the
function itself.

declare(strict_types=1);

function find(int $id): Model
{

$id = '' . $id;

/*
* This is perfectly allowed in PHP
* `$id` is a string now.
*/

// …
}

find('1'); // This would trigger a TypeError.

find(1); // This would be fine.

Even with strict types and type hints, PHP's type system is weak. Type hints
only ensure a variable's type at that point in time, without a guarantee about
any future value that variable might have.

Like I said before: it makes sense for PHP to have a weak type system, since
all input it has to deal with starts out as a string. There is an interesting
property to strong types though: they come with a few guarantees. If a
variable has a type that's unchangeable, a whole range of unexpected
behaviour simply cannot happen anymore.

You see, it's mathematically provable that if a strongly typed program
compiles, it's impossible for that program to have a range of bugs which
would be able to exist in weakly typed languages. In other words, strong

Working with data 25

types give the programmer a better insurance that the code actually behaves
how it's supposed to.

As a sidenote: this doesn't mean that a strongly typed language cannot have
bugs! You're perfectly able to write a buggy implementation. But when a
strongly typed program compiles successfully, you're sure a certain set of
type-related bugs and errors can't occur in that program.

Strong type systems allow developers to have much more insight into the
program when writing the code, instead of having to run it.

There's one more concept we need to look at: static and dynamic type
systems—and this is where things start to get interesting.

As you're probably aware, PHP is an interpreted language which means that a
PHP script is translated to machine code at runtime. When you send a request
to a server running PHP, it will take those plain .php files, and parse that text
into something the processor can execute.

Again, this is one of PHP's strengths: the simplicity of writing a script,
refreshing the page, and everything is there. That's a big difference compared
to a language that has to be compiled before it can be run.

Obviously there are caching mechanisms which optimise this, so the above
statement is an oversimplification but it's good enough to get to the next point
though.

That point is that, once again, there is a downside to PHP's approach: since it
only checks its types at runtime, there might be type errors that crash the
program, while running. You might have a clear error to debug, but still the
program has crashed.

26 Laravel beyond CRUD

This type checking at runtime makes PHP a dynamically typed language. A
statically typed language on the other hand will have all its type checks done
before the code is executed, usually during compile time.

As of PHP 7.0, its type system has been improved quite a lot. So much so that
tools like PHPStan, Phan and Psalm started to become very popular lately.
These tools take the dynamic language that is PHP, but run a bunch of statical
analyses on your code.

These opt-in libraries can offer quite a lot of insight into your code, without
ever having to run it or run unit tests. What's more, an IDE like PhpStorm also
has many of these static checks built-in.

With all this background information in mind, it's time to return to the core of
our application: data.

Structuring unstructured data

Have you ever had to work with an “array of stuff” that was actually more than
just a list? Did you use the array keys as fields? And did you feel the pain of
not knowing exactly what was in that array? How about not being sure
whether the data in it is actually what you expect it to be, or what fields are
available?

Working with data 27

Let's visualise what I'm talking about: working with Laravel's requests. Think
of this example as a basic CRUD operation to update an existing customer.

function store(CustomerRequest $request, Customer $customer)
{

$validated = $request->validated();

$customer->name = $validated['name'];
$customer->email = $validated['email'];

// …
}

You might already see the problem arising: we don't know exactly what data is
available in the $validated array. While arrays in PHP are a versatile and
powerful data structure, as soon as they are used to represent something
other than “a list of things”, there are better ways to solve your problem.

Before looking at solutions, here's what you could do to deal with this
situation:

• Read the source code
• Read the documentation
• Dump $validated to inspect it
• Or use a debugger to inspect it

Now imagine for a minute that you're working with a team of several
developers on this project, and that one of your colleagues has written this
piece of code five months ago. I can guarantee you that you will not know
what data you're working with, without doing any of the cumbersome things
listed above.

28 Laravel beyond CRUD

It turns out that strongly typed systems in combination with static analysis
can be a great help in understanding what exactly we're dealing with.
Languages like Rust, for example, solve this problem cleanly:

struct CustomerData {
name: String,
email: String,
birth_date: Date,

}

Actually, a struct is exactly what we need but unfortunately PHP doesn't have
structs; it has arrays and objects, and that's it.

However… objects and classes might be enough.

class CustomerData
{

public string $name;
public string $email;
public Carbon $birth_date;

}

It's a little more verbose, but it basically does the same thing. This simple
object could be used like so.

function store(CustomerRequest $request, Customer $customer)
{

$validated = CustomerData::fromRequest($request);

$customer->name = $validated->name;
$customer->email = $validated->email;
$customer->birth_date = $validated->birth_date;

// …
}

Working with data 29

The static analyser built into your IDE would always be able to tell us what
data we're dealing with.

This pattern of wrapping unstructured data in types, so that we can use that
data in a reliable way, is called “data transfer objects”. It's the first concrete
pattern I highly recommend you to use in your larger-than-average Laravel
projects.

When discussing this book with your colleagues, friends or within the Laravel
community, you might stumble upon people who don't share the same vision
about strong type systems. There are in fact lots of people who prefer to
embrace the dynamic/weak side of PHP, and there's definitely something to
say for that.

In my experience though, there are more advantages to the strongly typed
approach when working with a team of several developers on a project for
serious amounts of time. You have to take every opportunity you can to
reduce cognitive load. You don't want developers having to start debugging
their code every time they want to know what exactly is in a variable. The
information has to be right there at hand, so that developers can focus on
what's important: building the application.

Of course, using DTOs comes with a price: there is not only the overhead of
defining these classes; you also need to map, for example, request data onto
a DTO. But the benefits of using DTOs definitely outweigh this added cost:
whatever time you lose initially writing this code, you make up for in the long
run.

The question about constructing DTOs from “external” data is one that still
needs answering though.

30 Laravel beyond CRUD

DTO factories

I will share two possible ways to construct DTOs, and also explain which one
is my personal preference.

The first one is the most correct one: using a dedicated factory.

class CustomerDataFactory
{

public function fromRequest(
CustomerRequest $request

): CustomerData {
return new CustomerData([

'name' => $request->get('name'),
'email' => $request->get('email'),
'birth_date' => Carbon::make(

$request->get('birth_date')
),

]);
}

}

Having a separated factory keeps your code clean throughout the project. I
would say it makes most sense for this factory to live in the application layer,
since it has to know about specific requests and other kinds of user input.

While being the correct solution, did you notice I used a shorthand in a
previous example? That's right; on the DTO class itself:
CustomerData::fromRequest().

Working with data 31

What's wrong with this approach? Well for one, it adds application-specific
logic in the domain. The DTO class, living in the domain, now has to know
about the CustomerRequest class, which lives in the application layer.

use Spatie\DataTransferObject\DataTransferObject;

class CustomerData extends DataTransferObject
{

// …

public static function fromRequest(
CustomerRequest $request

): self {
return new self([

'name' => $request->get('name'),
'email' => $request->get('email'),
'birth_date' => Carbon::make(

$request->get('birth_date')
),

]);
}

}

Obviously, mixing application-specific code within the domain isn't the best of
ideas. However, it is my preference. There's two reasons for that.

First of all, we already established that DTOs are the entry point for data into
the codebase. As soon as we're working with data from the outside, we want
to convert it to a DTO. We need to do this mapping somewhere, so we might
as well do it within the class that it's meant for.

Secondly, and this is the more important reason; I prefer this approach
because of one of PHP's own limitations: it doesn't support named
parameters—yet.

32 Laravel beyond CRUD

See, you don't want your DTOs to end up having a constructor with an
individual parameter for each property: this doesn't scale, and is very
confusing when working with nullable or default-value properties. That's why I
prefer the approach of passing an array to the DTO, and have it construct
itself based on the data in that array. As an aside: we use our
spatie/data-transfer-object package to do exactly this.

Because named parameters aren't supported, there's also no static analysis
available, meaning you're in the dark about what data is needed whenever
you're constructing a DTO. I prefer to keep this "being in the dark" within the
DTO class, so that it can be used without an extra thought from the outside.

If PHP were to support something like named parameters though, which it will
in PHP 8, I would say the factory pattern is the way to go:

public function fromRequest(
CustomerRequest $request

): CustomerData {
return new CustomerData(

name: $request->get('name'),
email: $request->get('email'),
birth_date: Carbon::make(

$request->get('birth_date')
),

);
}

Until PHP supports this, I would choose the pragmatic solution over the
theoretically correct one. It's up to you though. Feel free to choose what fits
your team best.

Working with data 33

An alternative to typed properties

There is an alternative to using typed properties: DocBlocks. Our DTO
package I mentioned earlier also supports them.

use Spatie\DataTransferObject\DataTransferObject;

class CustomerData extends DataTransferObject
{

/** @var string */
public $name;

/** @var string */
public $email;

/** @var \Carbon\Carbon */
public $birth_date;

}

In some cases, DocBlocks offer advantages: they support array of types and
generics. But by default though, DocBlocks don't give any guarantees that the
data is of the type they say it is. Luckily PHP has its reflection API, and with it,
a lot more is possible.

The solution provided by this package can be thought of as an extension of
PHP’s type system. While there's only so much one can do in userland and at
runtime, still it adds value. If you're unable to use PHP 7.4 and want a little
more certainty that your DocBlock types are actually respected, this package
has you covered.

34 Laravel beyond CRUD

A note on DTO's in PHP 8

PHP 8 will support named arguments, as well as constructor property
promotion. Those two features will have an immense impact on the amount of
boilerplate code you'll need to write.

Here's what a small DTO class would look like in PHP 7.4.

class CustomerData extends DataTransferObject
{

public string $name;

public string $email;

public Carbon $birth_date;

public static function fromRequest(
CustomerRequest $request

): self {
return new self([

'name' => $request->get('name'),
'email' => $request->get('email'),
'birth_date' => Carbon::make(

$request->get('birth_date')
),

]);
}

}

$data = CustomerData::fromRequest($customerRequest);

Working with data 35

And this is what it would look like in PHP 8.

class CustomerData
{

public function __construct(
public string $name,
public string $email,
public Carbon $birth_date,

) {}
}

$data = new CustomerData(...$customerRequest->validated());

36 Laravel beyond CRUD

Because data lives at the core of almost every project, it's one of the most
important building blocks. Data transfer objects offer you a way to work with
data in a structured, type safe and predictable way.

You'll note throughout this book that DTOs are used more often than not.
That's why it was so important to take an in-depth look at them at the start.
Likewise, there's another crucial building block that needs our thorough
attention: actions. That's the topic for the next chapter.

Working with data 37

